我们研究逆增强学习(IRL)和模仿学习(IM),这是从专家所证明的轨迹中恢复奖励或政策功能的问题。我们提出了一种新的方法来通过在最大的熵框架中添加权重功能来改善学习过程,并具有学习和恢复专家政策的随机性(或有限理性)的动机。我们的框架和算法允许学习奖励(或政策)功能以及添加到马尔可夫决策过程中的熵条款的结构,从而增强了学习过程。我们使用人类和模拟演示以及通过离散和连续的IRL/IM任务进行的数值实验表明,我们的方法表现优于先前的算法。
translated by 谷歌翻译
Generative models have been widely studied in computer vision. Recently, diffusion models have drawn substantial attention due to the high quality of their generated images. A key desired property of image generative models is the ability to disentangle different attributes, which should enable modification towards a style without changing the semantic content, and the modification parameters should generalize to different images. Previous studies have found that generative adversarial networks (GANs) are inherently endowed with such disentanglement capability, so they can perform disentangled image editing without re-training or fine-tuning the network. In this work, we explore whether diffusion models are also inherently equipped with such a capability. Our finding is that for stable diffusion models, by partially changing the input text embedding from a neutral description (e.g., "a photo of person") to one with style (e.g., "a photo of person with smile") while fixing all the Gaussian random noises introduced during the denoising process, the generated images can be modified towards the target style without changing the semantic content. Based on this finding, we further propose a simple, light-weight image editing algorithm where the mixing weights of the two text embeddings are optimized for style matching and content preservation. This entire process only involves optimizing over around 50 parameters and does not fine-tune the diffusion model itself. Experiments show that the proposed method can modify a wide range of attributes, with the performance outperforming diffusion-model-based image-editing algorithms that require fine-tuning. The optimized weights generalize well to different images. Our code is publicly available at https://github.com/UCSB-NLP-Chang/DiffusionDisentanglement.
translated by 谷歌翻译
The introduction of high-quality image generation models, particularly the StyleGAN family, provides a powerful tool to synthesize and manipulate images. However, existing models are built upon high-quality (HQ) data as desired outputs, making them unfit for in-the-wild low-quality (LQ) images, which are common inputs for manipulation. In this work, we bridge this gap by proposing a novel GAN structure that allows for generating images with controllable quality. The network can synthesize various image degradation and restore the sharp image via a quality control code. Our proposed QC-StyleGAN can directly edit LQ images without altering their quality by applying GAN inversion and manipulation techniques. It also provides for free an image restoration solution that can handle various degradations, including noise, blur, compression artifacts, and their mixtures. Finally, we demonstrate numerous other applications such as image degradation synthesis, transfer, and interpolation.
translated by 谷歌翻译
无线传感器网络由随机分布的传感器节点组成,用于监视目标或感兴趣的区域。由于每个传感器的电池容量有限,因此维持连续监视的网络是一个挑战。无线电源传输技术正在作为可靠的解决方案,用于通过部署移动充电器(MC)为传感器充电传感器。但是,由于网络中出现不确定性,为MC设计最佳的充电路径是具有挑战性的。由于网络拓扑的不可预测的变化,例如节点故障,传感器的能耗率可能会显着波动。这些变化也导致每个传感器的重要性变化,在现有作品中通常被认为是相同的。我们在本文中提出了一种使用深度强化学习(DRL)方法提出新颖的自适应充电方案,以解决这些挑战。具体来说,我们赋予MC采用充电策略,该策略确定了下一个在网络当前状态上充电条件的传感器。然后,我们使用深层神经网络来参数这项收费策略,该策略将通过强化学习技术进行培训。我们的模型可以适应网络拓扑的自发变化。经验结果表明,所提出的算法的表现优于现有的按需算法的大幅度边缘。
translated by 谷歌翻译
在处理机器人技术,游戏和组合优化等领域的问题时,质量多样性(QD)算法已被证明非常成功。它们的目的是最大程度地提高基本问题所谓行为空间不同区域的解决方案的质量。在本文中,我们应用QD范式来模拟背包问题上的动态编程行为,并提供对QD算法的第一个运行时分析。我们证明他们能够在预期的伪多项式时间内计算最佳解决方案,并揭示导致完全多项式随机近似方案(FPRAS)的参数设置。我们的实验研究根据在行为空间中构建的解决方案以及获得最佳解决方案所需的运行时评估了经典基准集的不同方法。
translated by 谷歌翻译
算法追索权旨在推荐提供丰富的反馈,以推翻不利的机器学习决策。我们在本文中介绍了贝叶斯追索权,这是一种模型不足的追索权,可最大程度地减少后验概率比值比。此外,我们介绍了其最小的稳健对应物,目的是对抗机器学习模型参数的未来变化。强大的对应物明确考虑了使用最佳传输(Wasserstein)距离规定的高斯混合物中数据的扰动。我们表明,可以将最终的最差目标函数分解为求解一系列二维优化子问题,因此,最小值追索问题发现问题可用于梯度下降算法。与现有的生成健壮的回流的方法相反,可靠的贝叶斯追索不需要线性近似步骤。数值实验证明了我们提出的稳健贝叶斯追索权面临模型转移的有效性。我们的代码可在https://github.com/vinairesearch/robust-bayesian-recourse上找到。
translated by 谷歌翻译
数字图像使得在微观和宏观长度尺度上的材料特性进行定量分析,但在获取图像时选择适当的分辨率是具有挑战性的。高分辨率意味着对给定样本的图像采集和更大的数据要求,但如果分辨率太低,则可能丢失重要信息。本文研究了解决方案对持续同源性的改变的影响,一种来自拓扑数据分析的工具,在所有长度尺度上提供图像中的图像中的结构签名。给定关于函数的先前信息,对象的几何形状,或者在给定分辨率下的密度分布,我们提供了在可接受的公差内选择粗糙分辨率的方法。我们展示了用于说明性合成实例和来自多孔材料的样品的数值案例研究,其中理论界限未知。
translated by 谷歌翻译
Existing automated techniques for software documentation typically attempt to reason between two main sources of information: code and natural language. However, this reasoning process is often complicated by the lexical gap between more abstract natural language and more structured programming languages. One potential bridge for this gap is the Graphical User Interface (GUI), as GUIs inherently encode salient information about underlying program functionality into rich, pixel-based data representations. This paper offers one of the first comprehensive empirical investigations into the connection between GUIs and functional, natural language descriptions of software. First, we collect, analyze, and open source a large dataset of functional GUI descriptions consisting of 45,998 descriptions for 10,204 screenshots from popular Android applications. The descriptions were obtained from human labelers and underwent several quality control mechanisms. To gain insight into the representational potential of GUIs, we investigate the ability of four Neural Image Captioning models to predict natural language descriptions of varying granularity when provided a screenshot as input. We evaluate these models quantitatively, using common machine translation metrics, and qualitatively through a large-scale user study. Finally, we offer learned lessons and a discussion of the potential shown by multimodal models to enhance future techniques for automated software documentation.
translated by 谷歌翻译
In this paper, we propose a novel technique, namely INVALIDATOR, to automatically assess the correctness of APR-generated patches via semantic and syntactic reasoning. INVALIDATOR reasons about program semantic via program invariants while it also captures program syntax via language semantic learned from large code corpus using the pre-trained language model. Given a buggy program and the developer-patched program, INVALIDATOR infers likely invariants on both programs. Then, INVALIDATOR determines that a APR-generated patch overfits if: (1) it violates correct specifications or (2) maintains errors behaviors of the original buggy program. In case our approach fails to determine an overfitting patch based on invariants, INVALIDATOR utilizes a trained model from labeled patches to assess patch correctness based on program syntax. The benefit of INVALIDATOR is three-fold. First, INVALIDATOR is able to leverage both semantic and syntactic reasoning to enhance its discriminant capability. Second, INVALIDATOR does not require new test cases to be generated but instead only relies on the current test suite and uses invariant inference to generalize the behaviors of a program. Third, INVALIDATOR is fully automated. We have conducted our experiments on a dataset of 885 patches generated on real-world programs in Defects4J. Experiment results show that INVALIDATOR correctly classified 79% overfitting patches, accounting for 23% more overfitting patches being detected by the best baseline. INVALIDATOR also substantially outperforms the best baselines by 14% and 19% in terms of Accuracy and F-Measure, respectively.
translated by 谷歌翻译
Modeling lies at the core of both the financial and the insurance industry for a wide variety of tasks. The rise and development of machine learning and deep learning models have created many opportunities to improve our modeling toolbox. Breakthroughs in these fields often come with the requirement of large amounts of data. Such large datasets are often not publicly available in finance and insurance, mainly due to privacy and ethics concerns. This lack of data is currently one of the main hurdles in developing better models. One possible option to alleviating this issue is generative modeling. Generative models are capable of simulating fake but realistic-looking data, also referred to as synthetic data, that can be shared more freely. Generative Adversarial Networks (GANs) is such a model that increases our capacity to fit very high-dimensional distributions of data. While research on GANs is an active topic in fields like computer vision, they have found limited adoption within the human sciences, like economics and insurance. Reason for this is that in these fields, most questions are inherently about identification of causal effects, while to this day neural networks, which are at the center of the GAN framework, focus mostly on high-dimensional correlations. In this paper we study the causal preservation capabilities of GANs and whether the produced synthetic data can reliably be used to answer causal questions. This is done by performing causal analyses on the synthetic data, produced by a GAN, with increasingly more lenient assumptions. We consider the cross-sectional case, the time series case and the case with a complete structural model. It is shown that in the simple cross-sectional scenario where correlation equals causation the GAN preserves causality, but that challenges arise for more advanced analyses.
translated by 谷歌翻译